2

T

o ("Classification of Handwritten
Chinese Number Characters

Team: No Eye Deer
Beibei Du, Jeffrey Feng, Luning Yang, Jiayi Zhao, Tian Zhong, Huaning Liu




Motivation

With pattern recognition algorithms, we can easily combine computer vision to
relieve information from bills, printed documents, and writings.

able to compare different machine

learning algorithm on their ’
performance to classify the

handwritten number characters in 6

Chinese. e

For this prediction task, we want to be / 2

/



Literature Review

e Source 1: Chinese Character Recognition

e This paper explores general methods of character recognition and suggests a formula
that fits more closely with Chinese Handwritings.

e Why Interesting: Rather than following traditional pixel-splitting techniques to address
image processing problems, it develops a new formula as approach that might be more
general for Chinese characters

e Why select this (relate to our study): Although we’re not looking in-depth about the
formula things, we share the same topics and thus hope to find inspirations from their
approaches.

e How is this relating to other papers: The proposed algorithms are all formula-based.



https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.97&rep=rep1&type=pdf

Literature Review

e Source 2: Dimension Reduction for Classification Cases

e This paper deals with several dimension reduction algorithms to help accelerate and
optimize the dimension reduction and feature selection process, including filter
algorithms, hybrid algorithm, etc. And attempts to formulate a integrated intelligent
feature selection system.

e Why Interesting: It attempts to actually automize the dimension reduction process

e \Why select this (relate to our study): This might be useful if we have too much
dimensions when building the model, which might lead to long running time.

e How is this relating to other papers: Compared with other papers that attempts to build
classification models for labels or characters, this paper focuses on the platform of
automating dimension reduction.



https://www.mlsurveys.com/papers/12.pdf

Literature Review

Source 3: NLP & Classification

e This paper first reviews some recent findings about supported entity types in NLP, then
proposes several algorithms to tackle the Named Entity Recognition and Classification
(NERC) tasks.

e Why Interesting: | really like the EDA part, looking at the character statistics from many
perspectives

e Why select this (relate to our study): Although the NERC topic in NLP is too abstract
and in-depth compared with our project, | think they proposed good approach of a
classification process, including feature engineering and, modeling.

e How is this relating to other papers: Compared with other papers, this, rather than
developed a formula or algorithm, parallelly proposed and lists the evaluation of several
models, and presents the comparing result, which is relatively a traditional ML process.



https://www.mlsurveys.com/papers/59.pdf

Data

MNIST is a large database of handwritten digits that is commonly used for training
various image processing systems. We found the Chinese MNIST dataset on
Kaggle, which includes 72-MB 15000 compressed images. Each image shows
one character from a set of 15 characters.

The data can be found here: https://www.kaggle.com/gpreda/chinese-
mnist?select=data

000020002002 00O
(v yx v 7272 072001 N7
2222322222222 222
3333333523333 333
He rAd449 49 F94d4d 4 \yHYy
5535855 SS 557958554579
bbbl bbbbaceéboel
T7777771 0790 12%777
¥3 79882 3 PTTIYTECLD
?7199999%9199%499499 9


https://www.kaggle.com/gpreda/chinese-mnist?select=data
https://www.kaggle.com/gpreda/chinese-mnist?select=data

Cleaning/EDA

The distinct labels and their representing
Chinese characters can be found in the table
below on the left, the 15000 instances of
characters, along with the array
representation of the image is shown on the
right.

Pixel: 64 * 64 i

60

0 10 20 30 40 50 60

value character code

0w 0O N OO O s~ W N = O
© 0 N OO O AW N - O

O N
2 o
-
o

100

-
N

1000
13 10000
14 100000000

>3 o

= o

o H M 4+ &

=
[N

© 0O N O O AW N -

=t e R L
g AW N - O



Experiment: Binary Classification

Sklearn: logistic regression

Task: identify all the images with label
“1”

10
Split: 80% train, 20% test o
208 -
Performance with penalty: v
. E 0.6 1
- train accuracy 100% S
v
- test accuracy 90% 2 04 -
w
. om =
This is not the accuracy for the % 02
multi-class prediction! g '
0.0 - — LogisticRegression (AUC = 0.76)
0.'0 0.'2 0.'4 0.’6 0.‘8 lIO

False Positive Rate (Positive label: 1)



Bagging Binary Classifiers

T . - . g ST - — 9 S
T ] oamat i no — == wrnn hiace far Ffiret rlaccifiay
»implemeting bagging to auce pl1as Ior 11rst classirier

bag_clfl = BaggingClassifier(SGDClassifier(), n_estimators=500, max_samples=100, bootstrap=True, n_jobs=—1)

model5 = bag_clfl. fit({train, ytrain)
v _predl = bag_clfl. predict(¥test)

ne to reduce

Voting among the four binary classifers: SGD, Logistic Regression, Random Forest,
and SVM

voting_clfl. score(¥train, ytrain)

0.9979166666666667

voting_clfl. score (Xtest, ytest)

0. 5583333333333334



Voting Binary Classifiers

T 1
444

#1/ A+ " T e e e T o s e B e g
#VYotle one time 1I0r ciassiiiers w/0 Dag

voting clfl = VotingClassifier(
estimators=[( szd’, szd_clf), U 1r’, log clf),

voting= soft’ )
final modell = voting clfl. fit(¥train, vtrain)

e
f.'l::
g

(rf’, rnd_clf), (sve', svm clf)],

voting_clfl. score(¥train, vytrain)

0. 9979166666666667

voting_clfl. score(¥test, ytest)

0. 9583333333333334



Artificial Neural Network(Multilayer Perceptron) with sklearn

Multi-layer perceptrons, or artificial neural networks, are a combination of
multiple neurons connected in the form a network. Unlike logistic regression, an
artificial neural network has an input layer, one or more hidden layers, and an

output layer.

We use Python's Scikit-Learn library to create our neural network that performs
this classification task. Given a set of features X and a target y, it can learn a
nonlinear function approximation for classification or regression.

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(hidden_layer_sizes=(15,), max_iter=1000)
mlp. fit(X_train, y_train.values.ravel())

MLPClassifier(hidden_layer_sizes=(15,), max_iter=1000)

predictions = mlp.predict(X_test)



MLP with sklearn

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test,predictions))
print(classification_report(y_test,predictions))

You can see the
confusion matrix
that every row is
ground truth and
every column is

prediction

g 0.00% 0.49% 1.00% 6.38% 4.04% 1.92% 1.02% 0.46% 4.02% 1.56%13.17%3.66% 3.41% 1.05%
SOICREE16.18%3.00% 0.53% 1.52% 0.96% 5.10% 3.23% 0.00% 5.08% 0.00% 0.00% 0.00% 0.52%
1.27%15.61%=R100720 50%1.06% 4.04% 8.65% 4.08%12.90%0.57% 4.30% 0.49% 0.00% 1.46% 1.57%
0.64% 7.17%16.18%28:100%1.60% 7.07% 7.21% 4.08% 6.91% 2.87% 2.73% 1.95% 1.83% 2.93% 5.24%
6.37% 0.00% 1.47% 200%7 07% 1.92% 6.63% 1.84% 9.20% 2.34%10.24%2.44% 4.39% 9.95%

5.73% 0.42% 3.92% 6.00% 4.79%20-2F%8.17% 6.12% 5.07% 5.17% 0.39%10.24%3.05%14.63%4.19%

© 1.27% 2.53% 3.92%10.50%0.53% 7.07%18.75%1.73%10.14%8.62% 6.64% 0.49% 4.27% 4.88% 7.33%

10

12

13

14

3.82% 3.38% 4.90% 4.00% 2.66% 9.09%11.06%23.47%8.29% 6.90% 5.08% 2.44%10.37%6.83% 9.95%
0.00% 5.49%11.27%7.00% 2.13% 2.53%12.02%6. 63%&2 30% 3.52% 0.49% 2.44% 1.95% 4.71%
6.37% 0.42% 1.47% 3.50% 4.79% 8.08% 7.69% 6.12% 3.69%25.86%1.56% 5.37% 0.61%10.73%45.18%
3.18% 2.53% 2.45% 3.00% 1.06% 1.01% 2.88% 7.65% 4.61% 0. 57%&5 37%24.39%3.90% 0.52%
6.37% 0.00% 1.96% 0.50% 7.98% 7.58% 2.88% 2.55% 2.30% 4.60% 4.69% 4.88% 12.20%4.19%
8.28% 1.27% 3.43% 3.50% 4.79% 1.52% 7.69% 5.10% 0.92% 5.75%21.09%1 95%5829% 5.76%
9.55% 0.42% 1.47% 4.50% 8.51% 8.59% 3.37% 4.59% 4.15% 8.05% 5.86%12.20%4.27%20.00%2.09%

1.27% 0.42% 0.98% 3.00% 9.04% 3.54% 4.81% 5.10% 4.15%15.52%1.95% 2.93% 5.49% 4.39%20.75%

0 Ground Truth
1 Ground Truth
2 Ground Truth
3 Ground Truth
4 Ground Truth
5 Ground Truth
6 Ground Truth
7 Ground Truth
8 Ground Truth
9 Ground Truth
10 Ground Truth
11 Ground Truth
12 Ground Truth
13 Ground Truth
14 Ground Truth

06

05

04

-03

-02

=01

=00

precision recall fl-score

1 0.52 0.47 0.49

2 0.58 0.63 0.61

3 0.29 0.23 0.26

4 0.28 0.27 0.27

5 0.34 0.34 0.34

6 0.25 0.23 0.24

7 0.30 0.31 0.30

8 0.19 0.20 0.20

9 0.34 0.32 0.33

10 0.23 0.25 0.24

11 0.32 0.39 0.35

12 0.26 0.28 0.27

13 0.33 0.31 0.32

14 0.23 0.24 0.24

15 0.32 0.30 0.31
accuracy 0.32
macro avg 0.32 0.32 0.32
weighted avg 0.32 0.32 0.32

support

215
190
194
202
189
231
217
197
187
195
192
201
197
198
195

3000
3000
3000

Also, the f1 score of 0.32 is quit bad, given
the fact that we had 3000 instances to train.



Baseline model: Logistic regression

Sklearn logistic regression has a multinomial classification predictor.
Train accuracy: 67%, test accuracy 36.2%

Take away: try grid search, different algorithms



SVM

clf = make_pipeline(StandardScaler(), SVC(kernel = ’rbf’

Support vector machines gamma=’ auto’)). fit (X_train, y_train)
(SVMs) are a set of
supervised learning
methods used for
classification, regression
and outliers detection.

clf. score (X_train, y_train)

0. 6688333333333333

clf. score (X_test, y_test)

0. 437

)

K (x,x') = exp(—7|x — X

Radial Basis Function (RBF) Kernel



Random Forest

Random forest classifier implements classification based on several decision trees
(‘'n_estimators’). Each decision tree gives a prediction outcome, and the final
result of the random forest depends on the outcome that occurs the most times

among the decision trees.

E E clf = RandomForestClassifier()
s

Predict 1 Predict 0 Predict 1

clfofit(XBErainy Sy itrain))

RandomForestClassifier()

Predict 1 Predict 1 Predict 0

ﬁEﬁ EEE EEE clf.score(X test, y test)

Predict 1 Predict 0
0.561

Image from: Simply running the algorithm, we get
https://towardsdatascience.com/understanding-random- Py v g ’ J
an accuracy of 0.561

forest-58381e0602d2




Grid Search

How can we decide how many decision trees we should use for a given random
forest model? Fit many RF models with different 'n_estimator’ and compare their

performance?

parameters = {
'n estimators': [10, 20, 30, 50, 70, 100, 150, 200],

For example, if there are 8 possible choices for the 'n_estimators’, how do you
compare them?



Grid Search

One way is to use the method GridSearchCV

parameters = {
'n_estimators': [10, 20, 30, 50, 70, 100, 150, 200],

create a model per
combination of the
parameters and assess the

performance based on K-fold

GridSearchCV(cv=5, estimator=RandomForestClassifier(), n_jobs=16, Validation
param _grid={'n_estimators': [10, 20, 30, 50, 70, 100, 150, 200]})

gs = GridSearchCV(RandomForestClassifier(), parameters, cv = 5, n_jobs = 16) [——————»

gs.fit(X_train, y train)

gs.best params__

— » The model that has
{"n, estlnators’s 200) the best performance
is when 'n_estmators’
=200




Inference on the result

It is interesting to note that the best 'n_estimators’ is the largest one among our choices. Does that
mean the test accuracy will increase as "'n_estimators™ increases?

clf = RandomForestClassifier(n_estimators = 200)
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

0.5906666666666667

clf = RandomForestClassifier(n_estimators = 400)
clf.fit(X_train, y_train)

clf.score(X_test, y_test)

0.6086666666666667

clf = RandomForestClassifier(n_estimators = 600)
clf.fit(X_train, y_train)

clf.score(X_test, y_test)

0.613

clf = RandomForestClassifier(n_estimators = 1000)
clf fit(XEtrain;Syitrain)

clf.score(X_test, y_test)

0.6183333333333333

clf = RandomForestClassifier(n_estimators = 2000)
clf.fit(X_train, y_train)

clf.score(X_test, y_test)

0.619

This is somehow true when we increase the 'n_estimators’
from 200, 400, 600, till 1000. However, the test accuracy
doesn’t increase a lot when we double our 'n_estimators’
from 1000 to 2000.

This is true probably because our model involves 4095
pixel values as features. A high number of features
demands a high model complexity.



ADABoost Classifier with scikit-learn

e A basic boosting algorithm that repetitively fits the classifier based on the mistakenly
predicted cases last time

e This, by my opinion, is quite a baseline model in gradient boosting algorithm, as the
original correct label might be predicted wrong when optimizing the original wrong ones.

e After tuning by GridSearch, we choose the n_estimators to be 300, and learning rate to
be 1, with a base estimator of Random Forest.

e The train score is reported to be 1, with a test accuracy of 57.3%.

e This is even lower than previous tuned random forest model, which indicates a possible
overfitting case



XGBoost Classifier

This is a high efficient gradient boosting algorithm to boost tree algorithms

e Formula behind: )
Instances mapped to Ieafj

FO(q) = -1 zT: | i, 9)°

g=1

+ ~T.

The tree learner structure q scoring function

e The train score is reported to be 0.99775, the test accuracy is reported to be 0.627
Take-away: This algorithm performs better, as it no longer only focuses on the “error”
ones in the previous training.



LightGBM Classifier

e LGBM is a gradient boosting framework based on tree algorithms developed by Microsoft.
Compared with previous two Gradient Boosting Algorithms, it takes faster running time and
generally strong performance, but being more sensitive to overfitting.

e To avoid overfitting, we try to restrict the max_depth and learning rate parameter to be 12
and 0.01 to limit the growth of trees. Then, grid search another important parameter --

num_leaves, and set it to be 41.
The train accuracy is reported to be 100%, the test accuracy is reported to be 71.8%.
Still being in the risk of overfitting, but the performance has been good enough for LGBM.

[ )
e Balanced Error Rate: 29.4%



Multi-Layer Perceptron Classifier with PyTorch

e This is a extension of previous MLP model, in which | rewrite the algorithm with PyTorch and
detect if the accuracy changes

e After several attempts, we settle the number of epochs to be 50, learning rate to be 0.01 and

batch size to be 64.

We take the criterion as cross entropy loss and optimizer as Adam.

Train Accuracy: 79.52%, Test Accuracy: 35.2% e Loss plot

= ftraining_loss
validation_loss

Take-away: Issue of Overfitting
Note: Validation is actually test set here
Note: SGD causes a disaster

0 10 20 30 40 50
Iteration



| supervised ML algorithm

IONa

th conventi

Problem w

)
(@)
@®
=

“zero

hown all the

igure s

F

ion

ifferent posi

D
D
D

1ze

ifferent font s

ing style

ifferent handwr



CNN with PyTorch

Finally, we used Pytorch Convoluted Neural Network model and obtained a test accuracy of
89%.

CNN((dropout): Dropout(p=0.4, inplace=False)
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv1): Conv2d(1, 5, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(5, 30, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=5070, out_features=300, bias=True)
(fc2): Linear(in_features=300, out_features=50, bias=True)
(fc3): Linear(in_features=50, out_features=20, bias=True)

(activation): LogSoftmax(dim=1))



More linear layers to reduce number

Log soft max
activation function

of neurons per layers:
5070 ->300 ->50 -> 20

Y

Convolution 2:
(2 x 2) kernel (2 x 2) kernel
no padding, stride size of 1 Max Pooling (2 * 2) no padding, stride size of 1 Max Pooling (2 * 2)

f*\ Ar*\r*\

Convolution 1:

Number of neurons ‘
after flatten: 5070 /

drop out: 0.4
o ST 1 ::::..,.
- N . .
1ch | n1 channels n2 channels n2 channels . / 14
Input n1 channels @ox13x13) \\| * //
(1 x 64 x 64) (10 x 60 x 60) (10 x 30 x 30) (30 x 26 x 26) \ /

OUTPUT

Model design plan. The numbers are not final or guarenteed to be accurate, and they are not perfectly presented by the figures
Picture adapted from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Result Present & Take-away

e Traditional models are outperformed by
boosting, bagging methods
e Confirm that CNN achieve the best

performance for image classification
Future improvement:

- Update CNN model with better structure and
parameters (change padding, pooling... etc)

- Use a smaller sample data so it doesn’t take
too long to train

- Try recurrent neural network, because of the
natural writing order.

Algorithm(Model)

Test Accuracy

Binary: LogReg

~20%

Binary: Bagging &
Voting

~37.48%, 52.81%

MLP ~32%
Baseline (LogReg) @ 36.2%
SVM 43.7%
Random Forest 61.8%
ADABoost 57.3%
XGBoost 62.7%
LightGBM 71.8%
CNN 89.0%




Links

Written Report:
https://docs.google.com/document/d/1ouunkNe6c57gTHIGRekZmOcppU8DFarlOk

eBktWPe3k/edit?usp=sharing

Github Repo:
https://github.com/COGS118B-character-classification/Chinese-MNIST



https://docs.google.com/document/d/1ouunkNe6c57gTHiGRekZm0cppU8DFarIOkeBktWPe3k/edit?usp=sharing
https://docs.google.com/document/d/1ouunkNe6c57gTHiGRekZm0cppU8DFarIOkeBktWPe3k/edit?usp=sharing
https://github.com/COGS118B-character-classification/Chinese-MNIST

