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Motivation

With pattern recognition algorithms, we can easily combine computer vision to 
relieve information from bills, printed documents, and writings.

For this prediction task, we want to be 
able to compare different machine 
learning algorithm on their 
performance to classify the 
handwritten number characters in 
Chinese.



Literature Review

● Source 1: Chinese Character Recognition
● This paper explores general methods of character recognition and suggests a formula 

that fits more closely with Chinese Handwritings.
● Why Interesting: Rather than following traditional pixel-splitting techniques to address 

image processing problems, it develops a new formula as approach that might be more 
general for Chinese characters

● Why select this (relate to our study): Although we’re not looking in-depth about the 
formula things, we share the same topics and thus hope to find inspirations from their 
approaches.

● How is this relating to other papers: The proposed algorithms are all formula-based.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.97&rep=rep1&type=pdf


Literature Review

● Source 2: Dimension Reduction for Classification Cases
● This paper deals with several dimension reduction algorithms to help accelerate and 

optimize the dimension reduction and feature selection process, including filter 
algorithms, hybrid algorithm, etc. And attempts to formulate a integrated intelligent 
feature selection system.

● Why Interesting: It attempts to actually automize the dimension reduction process
● Why select this (relate to our study): This might be useful if we have too much 

dimensions when building the model, which might lead to long running time.
● How is this relating to other papers: Compared with other papers that attempts to build 

classification models for labels or characters, this paper focuses on the platform of 
automating dimension reduction.

https://www.mlsurveys.com/papers/12.pdf


Literature Review

● Source 3: NLP & Classification
● This paper first reviews some recent findings about supported entity types in NLP, then 

proposes several algorithms to tackle the Named Entity Recognition and Classification 
(NERC) tasks.

● Why Interesting: I really like the EDA part, looking at the character statistics from many 
perspectives

● Why select this (relate to our study): Although the NERC topic in NLP is too abstract 
and in-depth compared with our project, I think they proposed good approach of a 
classification process, including feature engineering and, modeling.

● How is this relating to other papers: Compared with other papers, this, rather than 
developed a formula or algorithm, parallelly proposed and lists the evaluation of several 
models, and presents the comparing result, which is relatively a traditional ML process.

https://www.mlsurveys.com/papers/59.pdf


Data

MNIST is a large database of handwritten digits that is commonly used for training 
various image processing systems. We found the Chinese MNIST dataset on 
Kaggle, which includes 72-MB 15000 compressed images. Each image shows 
one character from a set of 15 characters.

The data can be found here: https://www.kaggle.com/gpreda/chinese-
mnist?select=data

https://www.kaggle.com/gpreda/chinese-mnist?select=data
https://www.kaggle.com/gpreda/chinese-mnist?select=data


Cleaning/EDA

The distinct labels and their representing 
Chinese characters can be found in the table 
below on the left, the 15000 instances of 
characters, along with the array 
representation of the image is shown on the 
right.

Pixel: 64 * 64



Experiment: Binary Classification

Sklearn: logistic regression

Task: identify all the images with label 
“1”

Split: 80% train, 20% test

Performance with penalty:

- train accuracy 100%
- test accuracy 90%

This is not the accuracy for the 
multi-class prediction!



Bagging Binary Classifiers



Voting Binary Classifiers



Artificial Neural Network(Multilayer Perceptron) with sklearn
Multi-layer perceptrons, or artificial neural networks, are a combination of 
multiple neurons connected in the form a network. Unlike logistic regression, an 
artificial neural network has an input layer, one or more hidden layers, and an 
output layer.

We use Python's Scikit-Learn library to create our neural network that performs 
this classification task. Given a set of features X and a target y, it can learn a 
nonlinear function approximation for classification or regression. 



MLP with sklearn

Also, the f1 score of 0.32 is quit bad, given 
the fact that we had 3000 instances to train.

You can see the 
confusion matrix 
that every row is 
ground truth and 
every column is 
prediction



Baseline model: Logistic regression

Sklearn logistic regression has a multinomial classification predictor.

Train accuracy: 67%, test accuracy 36.2%

Take away: try grid search, different algorithms



SVM

Support vector machines 
(SVMs) are a set of 
supervised learning 
methods used for 
classification, regression 
and outliers detection.

Radial Basis Function (RBF) Kernel



Random Forest

Random forest classifier implements classification based on several decision trees 
(`n_estimators`). Each decision tree gives a prediction outcome, and the final 
result of the random forest depends on the outcome that occurs the most times 
among the decision trees.         

Simply running the algorithm, we get 
an accuracy of 0.561

Image from: 
https://towardsdatascience.com/understanding-random-
forest-58381e0602d2



Grid Search

How can we decide how many decision trees we should use for a given random 
forest model? Fit many RF models with different `n_estimator` and compare their 
performance? 

For example, if there are 8 possible choices for the `n_estimators`, how do you 
compare them? 



Grid Search

One way is to use the method GridSearchCV 

create a model per 
combination of the 
parameters and assess the 
performance based on K-fold 
validation

The model that has 
the best performance 
is when `n_estmators` 
= 200



Inference on the result
It is interesting to note that the best `n_estimators` is the largest one among our choices. Does that 
mean the test accuracy will increase as `n_estimators`  increases? 

This is somehow true when we increase the `n_estimators` 
from 200, 400, 600, till 1000. However, the test accuracy 
doesn’t increase a lot when we double our `n_estimators` 
from 1000 to 2000. 

This is true probably because our model involves 4095 
pixel values as features. A high number of features 
demands a high model complexity. 



ADABoost Classifier with scikit-learn

● A basic boosting algorithm that repetitively fits the classifier based on the mistakenly 
predicted cases last time

● This, by my opinion, is quite a baseline model in gradient boosting algorithm, as the 
original correct label might be predicted wrong when optimizing the original wrong ones.

● After tuning by GridSearch, we choose the n_estimators to be 300, and learning rate to 
be 1, with a base estimator of Random Forest.

● The train score is reported to be 1, with a test accuracy of 57.3%.
● This is even lower than previous tuned random forest model, which indicates a possible 

overfitting case



XGBoost Classifier

● This is a high efficient gradient boosting algorithm to boost tree algorithms
● Formula behind: 

● The train score is reported to be 0.99775, the test accuracy is reported to be 0.627
● Take-away: This algorithm performs better, as it no longer only focuses on the “error” 

ones in the previous training.



LightGBM Classifier

● LGBM is a gradient boosting framework based on tree algorithms developed by Microsoft. 
Compared with previous two Gradient Boosting Algorithms, it takes faster running time and 
generally strong performance, but being more sensitive to overfitting.

● To avoid overfitting, we try to restrict the max_depth and learning rate parameter to be 12 
and 0.01 to limit the growth of trees. Then, grid search another important parameter --
num_leaves, and set it to be 41.

● The train accuracy is reported to be 100%, the test accuracy is reported to be 71.8%.
● Still being in the risk of overfitting, but the performance has been good enough for LGBM.
● Balanced Error Rate: 29.4%



Multi-Layer Perceptron Classifier with PyTorch

● This is a extension of previous MLP model, in which I rewrite the algorithm  with PyTorch and 
detect if the accuracy changes

● After several attempts, we settle the number of epochs to be 50, learning rate to be 0.01 and 
batch size to be 64.

● We take the criterion as cross entropy loss and optimizer as Adam.
● Train Accuracy: 79.52%, Test Accuracy: 35.2%
● Take-away: Issue of Overfitting
● Note: Validation is actually test set here
● Note: SGD causes a disaster



Problem with conventional supervised ML algorithm

- Figure shown all the “zero” image
- Different position
- Different font size
- Different handwriting style.. 



CNN with PyTorch

Finally, we used Pytorch Convoluted Neural Network model and obtained a test accuracy of 
89%.

CNN((dropout): Dropout(p=0.4, inplace=False)

(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(conv1): Conv2d(1, 5, kernel_size=(5, 5), stride=(1, 1))

(conv2): Conv2d(5, 30, kernel_size=(5, 5), stride=(1, 1))

(fc1): Linear(in_features=5070, out_features=300, bias=True)

(fc2): Linear(in_features=300, out_features=50, bias=True)

(fc3): Linear(in_features=50, out_features=20, bias=True)

(activation): LogSoftmax(dim=1))





Result Present & Take-away

● Traditional models are outperformed by 
boosting, bagging methods

● Confirm that CNN achieve the best 
performance for image classification

Future improvement:

- Update CNN model with better structure and 
parameters (change padding, pooling… etc)

- Use a smaller sample data so it doesn’t take 
too long to train

- Try recurrent neural network, because of the 
natural writing order.

Algorithm(Model) Test Accuracy

Binary: LogReg ~20%

Binary: Bagging & 
Voting

~37.48%, 52.81%

MLP ~32%

Baseline (LogReg) 36.2%

SVM 43.7%

Random Forest 61.8%

ADABoost 57.3%

XGBoost 62.7%

LightGBM 71.8%

CNN 89.0%



Links

Written Report: 
https://docs.google.com/document/d/1ouunkNe6c57gTHiGRekZm0cppU8DFarIOk
eBktWPe3k/edit?usp=sharing

Github Repo:

https://github.com/COGS118B-character-classification/Chinese-MNIST

https://docs.google.com/document/d/1ouunkNe6c57gTHiGRekZm0cppU8DFarIOkeBktWPe3k/edit?usp=sharing
https://docs.google.com/document/d/1ouunkNe6c57gTHiGRekZm0cppU8DFarIOkeBktWPe3k/edit?usp=sharing
https://github.com/COGS118B-character-classification/Chinese-MNIST

