
Airbnb Automation with Airtable

Author: Jiayi Zhao

GitHub Repository URL: https://github.com/vikizzz/Airbnb-Automation/

June 29, 2023

Page 1 of 18

Viki Zhao

Viki Zhao
Author: Yilin Xie, Jiayi Zhao

Viki Zhao
September 5, 2023



1 Motivation

Airbnb is a service that lets property owners rent out their spaces to travelers looking for a
space to stay (section 2.1). Hosts who post hundreds of listings usually have a huge amount of
reservations. It is hard for them to manage their properties. Specifically, when a customer checks
out, the cleaning crew need to be notified on time to clean up all dirty rooms, or when the toilet is
clogged, the maintenance team need to be notified on time to fix things up. The list goes on and
on.

To simplify the analysis process, I implemented an automation system which periodically
scrapes the data from Airbnb and helps with the analysis. The entire system can be divided into
two parts: AWS (Amazon Web Service) and Airtable where the former is the backend section
and the later is the UI/frontend section. All involved technology frameworks & platforms are
introduced in section 2.

2 Short Intro on Platforms

2.1 Airbnb

Airbnb is an online marketplace that connects people who want to rent out their homes with
people who are looking for accommodations in specific locations. Originally, Airbnb offered pub-
lic APIs for developers to play around. However, as the number of users increasingly grew, Airbnb
no longer provides public APIs but charges for their uses. It made individual property manage-
ment harder than before and lowered the efficiency for hosts.

2.2 AWS

AWS is a cloud service offered by Amazon since 2002. It supports technology and programs
that help to manage and monitor the environment to ensure performance and cost optimization,
to manage security and downtime risks, and to automate remediation of issues to extent possible.
In this project, since reservations data update frequently, it is necessary to keep the hosts updated.
To do so, I put the major code onto an EC2 instance that runs on AWS, which scraps data from
Airbnb and stores a backup to S3 and maintains the most recent data in a DynamoDB database
(section 3.2).

2.3 Airtable

Airtable is an easy-to-use online platform for creating and sharing relational databases. The
reason why I used it in this project is because most hosts on Airbnb have limited amount of knowl-
edge in computer science, and simply scraping and storing the data in a database without offering
a reader-friendly UI is meaningless to them. Airtable is more like an online version of Excel or a
more powerful version of Google sheet as it supports data syncing among different tables, running
scripts, and setting up automation based on various of triggers.

Page 2 of 18



3 Design

In this section, I will elaborate more on the detailed design of the entire project. Specifically, it
has the following three main parts: scripts logic, AWS architecture, and Airtable workflow.

3.1 Scripts

3.1.1 Selenium Behind the Scene

As mentioned before, Airbnb has banned public API access for a few years. Even with the
credentials of a host account, it is still difficult to pass the authentication on the website. In the
script of this project, I used a package called Selenium, which is a suite of tools for automating
web browsers. In short, it simulates human behaviors through code, such as clicking a button,
filling the input fields, submitting a request through a form provided in the website, etc.

With Selenium, the script locates the login form and credentials input fields by either XPATH
or CSS Selector (built-in tools in chrome browser), and then inputs account info to and submit
the form to authenticate. Once successfully logged in, the script navigates to the reservation page
through URL https://www.airbnb.com/hosting/reservations (figure 1).

Figure 1: The reservation page in a hosting account on Airbnb. All sensitive info is hidden (the first hidden
column are the guests names and the second are confirmation codes).

Note that during the actual execution of the script, the above demo page will not display
because the script initialize the web driver as ”headless”, which is an optional setting offered
in Selenium. With ”headless” mode on, the user will not be able to see a real browser running

Page 3 of 18



but instead, the executable simulated browser runs behind the scenes. To extract the reservation
data needed, the script uses another attribute in the WebDriver object: driver.page source, which
contains the HTML source code in string format. The extracted data will be stored in a Json/dict
object for later usage (section 3.2). An example of the extracted data is as follows:

{
"LBO-xxx": {

"internal name": "LBO-xxx",
"reservations": {

"confirmation": ["code_0", "code_1", "code_2", ...],
"status": ["status_0", "status_1", "status_2", ...],
"check in": ["date_0", "date_1", "date_2", ...],
"check out": ["date_0", "date_1", "date_2", ...],
"total payout": ["0.0", "1.0", "2.0", ...]

}
},
...

}

Listing 1: Part of the extracted data from the upcoming reservation page.

Internal names & Listing names: Each item in the demo data dict above corresponds to one
or more entries in the reservation page, as one property might have multiple reservations which
have different check-in and check-out dates. Note that the keys in the dict are different from
the ”Listing” in the reservation page. This is because Airbnb lets hosts to have two names for
each property: listing name that contains detailed information of a property and only shown to
travelers/guests, internal name that is shorter for manage and only visible to hosts themselves. All
the internal names are scraped using the same logic from another listing page and pre-processed
in this script (figure 2).

Figure 2: A part of the listing and internal names map of one property.

Page 4 of 18



3.1.2 Class Diagram

Refer to figure 3 for the script side class diagram. I divided the key functions in this project into
3 parts and wrapped them up into 3 classes (managers). Note there is no dependencies among
these classes. In this project, AWS System manager is only used to store the credentials and to
achieve the automation of periodical execution of the scripts. Therefore, it is not included in
section 3.2.

WebDriverManager handles browser-related operations such as reading in HTML source code,
extracting useful information, and storing the data as a field. RecordManager handles operations
that integrates with DynamoDB which includes all valid CRUD HTTP requests. Credentials-
Manager only talks to AWS System manager and extract account credentials from a sub-service
Parameter Store.

Figure 3: Script side class diagram.

3.2 Cloud - AWS

Since Selenium requires an executable browser installed in the environment, for simplicity, the
script will be ran on an EC2 instance (section 3.1). Refer to figure 4, all the scripts in the previous
sub-section are on instance t3.micro. Except all other components/services that are necessary
for AWS accounts management and web security, the core services used in this projects are EC2,
Simple Storage Service (S3), Gateway API, and Lambda.

Page 5 of 18



Figure 4: Application Architecture on AWS.

3.2.1 EC2

The selection of proper EC2 instance is based on the requirement of CPU usage of the scripts. In
other words, if the host accounts have more properties that need to be managed, an EC2 instance
of better performance is required. In this project, the total number of properties is around 200.
Therefore, I chose to temporarily test on t3.micro, which is in the free tier of AWS.

Due to security issues, the EC2 instance is not open to public but only developers’ IP address.
To log into the instance, I can either use the session manager offered by AWS or through SSH with
authentication key pair. Once successfully connected with the instance, all the dependencies in
the requirements.txt can be installed (check github repository).

The EC2 instance in this project has full access to S3 and DynamoDB (section 3.2.2 & 3.2.3)
which are two storage services used in this project. Specifically, besides directly posting real-time
data into the database, the scripts also send a backup copy of completed and canceled reservations
to S3 (figure 1).

3.2.2 S3

Simple Storage Service, also known as S3, is a cloud object service offered by AWS with scala-
bility, data availability, security and performance. In this project, the main purpose of S3 is to store
the backup of all reservation data, including upcoming, completed, and canceled reservations.

Page 6 of 18



Figure 5: Backup records of reservation data in S3 (sensitive info hidden).

Besides storing backups, S3 in this project also stores the logs monitored by AWS CloudTrail,
which is used to debug when the program crashes for unknown reasons.

3.2.3 DynamoDB

DynamoDB is a fully managed, serverless, key-value NoSQL databased designed to run high-
performance applications at any scale. Instead of using a relational database, I chose DynamoDB
because the scripts do not scrape all information displayed in the reservation page but only what
are needed so far. In other words, the schema is various depending on the demands of hosts.
As mentioned in section 3.2.1, DynamoDB mainly stores the most recent or real-time reservation
data of the upcoming section. At each time when the scripts run, the upcoming reservations are
send directly to DynamoDB through Gateway API and Lambda and overwrites the original data
(section 3.2.4 & 3.2.5).

Note that the data in the database has similar structure to the extracted data (Code 1). Namely,
the number of rows is fixed as long as the number of properties remains the same. The database
is designed this way to reduce the number of items and speed up the searching efficiency. The
variable in each item/row is the reservations. At each run, the properties which has no upcoming
reservations will have empty field, and those which do will overwrites the original reservation
column (Figure 6).

Figure 6: Items in the AWS DynamoDB.

Page 7 of 18



3.2.4 Gateway API

Amazon gateway API is a fully managed service that make it easy for developers to create,
publish, maintain, monitor, and secure APIs at any scale. In this project, so far, there are two main
APIs/endpoints: table name and id (figure 7).

Figure 7: Amazon Gateway API: two major endpoints in this project.

According to the architecture in figure 4, Amazon gateway API in this project plays an impor-
tant role in transferring data between other services and DynamoDB. Note that although ANY
HTTP methods are supported with the table name specified, merely providing a table name will
fail the sanity check in Lambda (section 3.2.5). In other words, HTTP requests such as GET all
items in the database and POST multiple items into the database is not allowed. In terms of cost
optimization, this design reduces the number of requests/search at each API call. On the other
hand, from the perspective of security, such design prevents from malicious usage of the API
under table name, which can increase the cost of gateway API service.

However, exploring the entire database is still achievable and will be needed under some cir-
cumstances. To do so, the developer will need to know the primary key of all the items in the
database and use the API for id under the table name to get one item at a call. This is one more
layer of restriction as mentioned in previous section (3.1), the primary key/internal name is hid-
den from public and only hosts can see it.

3.2.5 Lambda

AWS lambda is a serverless, event-driven compute service that lets developers run code for
virtually any type of application or backend service without provisioning or managing servers.
In this project, Amazon gateway API does not directly talk to the database but through triggering

Page 8 of 18



function calls in lambda. Whenever an HTTP request is received, lambda functions will be notified
and triggered to handle the corresponding type of requests (figure 8).

Figure 8: AWS Lambda: connected with Amazon Gateway API.

As mentioned in section 3.2.4, without specifying the table name and id will fail the sanity
check, which is handled in lambda (Listing 2).

if (tableName === undefined) {
let errorResponse = buildErrorMessage("Error: You’re missing the table

parameter");
return processResponse(IS_CORS, errorResponse, 400);

}

if (!requestedItemId && event.httpMethod !== ’POST’) {
let errorResponse = buildErrorMessage("Error: You’re missing the id

parameter");
return processResponse(IS_CORS, errorResponse, 400);

} else if (requestedItemId) {
const key = {};
key[PRIMARY_KEY] = requestedItemId;
params.Key = key;

}

Listing 2: Sanity Check in Lambda

Page 9 of 18



3.3 UI - Airtable

Airtable is the frontend section of the entire project. The structure of Airtable resembles that of
a database. One Airtable account can have multiple bases and one base can have multiple tables
(Figure 9). In addition, Airtable has built-in extensions which supports JavaScript and TypeScript.
The integration with AWS is achieved through such extension and once data is imported, further
analysis can be done with different extensions.

Figure 9: Airtable: some bases in which have tables.

The general workflow of Airtable is in figure 11. The only base/table that integrates with
DynamoDB is the base AllPropertiesInfo. From AllPropertiesInfo, all related data will be passed
to other bases using the sync functionality offered by Airtable (Figure 10). The most important
departments in this project are maintenance, cleaning, and procurement departments, whose data
is calculated based on the most current upcoming reservations. In such way, the corresponding
crew of those department can see which property/room is dirty, when will the next guest arrive,
whether a property/room is available for maintenance, etc.

Figure 10: Sync function in Airtable which allows data from one base to be synchronized with that in
another base.

Page 10 of 18



Furthermore, the data in AllPropertiesInfo is grouped based on different regions and trans-
ferred to the corresponding base. This design is for better management as crews in different region
should only have access to the data in their own region. Airtable supports account privilege man-
agement. The admin account can edit the readability of bases and only assign a group of subusers
to view certain bases.

Other departments/bases require less from AllPropertiesInfo or transfer data back to it. For
instance, if a room is broke and the guest want to switch rooms, such operation can only be done
manually. All such records are stored in another base and it updates the data in AllPropertiesInfo.

Figure 11: General workflow in Airtable.

4 Security

All crucial operations in this entire project are in AWS cloud. Therefore, maintaining a safe
network on AWS is highly required. All used AWS services are granted with the least privilege
and each service is assigned with specific roles and policies for them to talk to each other, which
are all managed by AWS.

In terms of the key service EC2 in which the scripts run, there are only two ways to log into
the instance: 1. through Session Manager offered by AWS; 2. through SSH with authentication
key pem. Note that although port 22 is allowed for this EC2 instance, it is not open to public. One
can only log into the instance under the restricted IP addresses. All other IPv4 and IPv6 portals
are closed.

Besides the security of all the AWS services, storing the credentials of the host account of
Airbnb has equal level of importance. In this project, instead of storing the user account and
password as variables in plaintext in the scripts, initially I set them as environment variables on

Page 11 of 18



EC2 instance. When the script runs, it can access the credentials from the environment variables.
This approach separates the credentials from the code and allows to manage them externally.
Nevertheless, in such way, a more complex initialization script is required for each session of
connection with EC2 because the environment variable will be gone once a session is terminated.
Therefore, a more secure and efficient way to protect the login credentials is through the Parameter
Store service under AWS System Manager.

5 User Benefits

This application/system is designed for property management companies or individuals. The
main purpose/goal of it is to optimize the costs and improve the efficiency by replacing as much
manual and humanoid operation with script automation. The automation here not only covers
data scraping but also data analysis.

Originally, users have to login to Airbnb and click hundreds of times to view all the reserva-
tions and examine them one by one to filter useful information. It was easy to make mistakes while
dealing with such a huge amount of data for a person. With the automation system, staff members
no longer need to look into the reservation pages and all reservation data has been cleaned up and
organized in a table where all useful information is obvious.

Moreover, hosts do not need to share their credentials with other staff or add co-host, which
could possibly cause network intrusion, fraud, and identity stealing. The automation is secured
under AWS cloud and only the hosts have full access whereas all other staff members’ privilege is
under control (read-only).

Although there are many mature and powerful property management systems on the market
nowadays, they are typically expensive for start-ups or individuals and usually those systems are
less scalable for customization. Comparing to them, this project achieves the same functionalities
with a minimum cost. The extension in Airtable also enables the project to adapt to different use
cases.

6 Feature Description

All functionalities of this project are divided into two subsection (6.1, 6.2).

6.1 Scripts

The core functionality of the scripts is to scrape data from Airbnb and update it to DynamoDB.
Except the basic logic from section 3.1, to access the data needed, the very first thing to do is to
pass the authentication of Airbnb. For machines that have never logged in an Airbnb account, it
requires the user to verify their identiy by confirmation code through either phone-calls or SMS
messages. In this project, all the accounts are binded with the same co-host who can receive the
SMS confirmation code using Google Voice.

The script has one and the only one operation which is not automated and requires mannual

Page 12 of 18



action: inputting the verification/confirmation code (Code. 3). For every account’s confirma-
tion/verification, Airbnb might randomly generate different pages. Some have the verification
code separated as 6 blocks or dashes while others might have just one input field. Therefore, this
section needs to be specially handled.

During developing, among all 7 accounts, so far I only found 3 different confirmation pages
which are all handled in the code below. If none of them was found, I can trace the logs and add
additional handlers for unseen pages.

def confirmation(driver, verification_code):
"""Handles the confirmation/verification of an account.

Parameters
----------
driver : WebDriver

The web driver instance for interacting with web pages.
verification_code : str

The verfication code used to authenticate a user.
"""
try: # 6 separated digits (square)

for i in range(6):
element_name = "airlock-code-input_codeinput_" + str(i)
vc_input = driver.find_element(By.NAME, element_name)
random_sleep(1, 1, 2)
vc_input.send_keys(verification_code[i])
print(f"Sending confirmation code {verification_code[i]}...")

print(f"Done sending {verification_code}")
except NoSuchElementException:

try: # 6 separated digits (dash)
for i in range(6):

element_name = f"codeinput_{i}"
vc_input = driver.find_element(By.NAME, element_name)
random_sleep(1, 1, 2)
vc_input.send_keys(verification_code[i])
print(f"Sending confirmation code {verification_code[i]}...")

print(f"Done sending {verification_code}")
except NoSuchElementException:

try: # not separated confirmation code
vc_input = driver.find_element(By.ID, "airlock-code-input")
random_sleep(1, 1, 2)
vc_input.send_keys(verification_code) # paste
print(f"Pasting confirmation code {verification_code}...")

except NoSuchElementException:
logger.error(f"Fail to find correct form.")
return

Listing 3: The confirmation handler in the script

Note that in the code above, there are some lines of random sleep which essentially pause the
program for a few seconds. The main reason of doing so is that excessive or suspicious automation
behavior may trigger security mechanisms that result in unresponsiveness. Therefore, the script
has to mimic human-like interaction patterns, to avoid rapid or excessive requests, and to comply

Page 13 of 18



with any rate limits or CAPTCHA mechanisms of Airbnb.

After authentication, the script will direct the driver to the reservation page and start scraping
data page by page. Refer to figure 12, the scraped data was send to the database and was accurate.

Figure 12: Demo: script scrapes data from Airbnb & send to AWS DynamoDB. On the left is Airbnb
reservation page in a normal browser; The middle is the execution of the script on EC2; The left shows the
items in AWS DynamoDB, which are just scraped using the script.

6.2 Airtable

In terms of the features in Airtable side, please refer to the use case diagram (Figure 13) and
Airtable workflow (Figure 11). The following subsections provide a more thorough description.

Figure 13: Use Case Diagram

Page 14 of 18



6.2.1 AllPropertiesInfo

This base/table is the only table which integrates with AWS DynamoDB, and all the scraped
data will be grab through its extension in JavaScript (Figure 14). Note that the table already has
some fixed data such as state, occupancy status, and cleaning status, which will not be gained
from database but analyzed using the data from database.

Figure 14: Data extracted using the extension (JavaScript).

The demo of Airtable has two buttons ”Sync” and ”Sync All”, which are used to update one
property and update all properties on Airtable. These two buttons are linked to the extensions on
the right, which is implemented in JavaScript.

6.2.2 Cleaning and Other Departments

Except AllPropertiesInfo base, all other bases and tables do not directly integrate with the
backend scripts. The very crucial information from AllPropertiesInfo is the current occupancy
status of a property and the earliest check-in date for the next guest. Those are used for cleaning
crew and maintenance crew to prioritize their work. In terms of the communication among other
bases and tables, Airtable provides a sync functionality which allow data to be transferred among
different bases/tables.(Figure 15).

Page 15 of 18



Figure 15: Tables in a base for a specific region R (all sensitive info is hidden). From left to right, the
first is the occupancy status table in region R whose data is synced from AllPropertiesInfo, the second is
the maintenance issue summarization whose ”Occupancy” is also synced from AllPropertiesInfo and its
”maintenance issue” will be synced to the third table, which is for maintenance crew to schedule inspection
and do their work.

7 Descriptions of APIs

In section 3.2.4, although Gateway API has already specified all types of HTTP requests, due
to security concerns and performance optimization, this project only supports the following API
endpoints (basic CRUD), and all other requests will fail the sanity check in Lambda.

7.1 CREATE one record

Description: This API creates a new property item in the given table. Note that this API is not
called by any script ran on EC2 but only in Airtable extension when hosts list a new property to
public.
Route : GATEWAY API INVOKE URL/table name/pk
HTTP method: POST
Input: JSON object (pk & all needed information)
Output: HTTP Status code.
Return: Success/Error message.

7.2 GET one record

Description: This API returns the specific property together with its most recent reservation data.
The admin user in Airtable updates AllPropertiesInfo table to retrieve the reservation data for
further workflow.
Route : GATEWAY API INVOKE URL/table name/pk
HTTP method: GET
Input: NONE
Output: HTTP Status code.
Return: Returns the user with the property info.

Page 16 of 18



7.3 UPDATE one record

Description: This API updates the reservation data of the given property.
Route : GATEWAY API INVOKE URL/table name/pk
HTTP method: POST
Input: None
Output: HTTP Status code.
Return: Success/Error message.

7.4 DELETE one record

Description: This API deletes one property item in the given table. Note that this API is not called
by any script ran on EC2 but only in Airtable extension when hosts no longer open that particular
property to public.
Route : GATEWAY API INVOKE URL/table name/pk
HTTP method: DELETE
Input: None
Output: HTTP Status code.
Return: Success/Error message.

8 Performance

The performance of the entire application to a great extent, depends on the response time of
Airbnb because all ”root” operations need to wait for Airbnb to return the data to the browser.
Besides, the newly updated Chrome (since version 113) has special checks for scripting and bots.
Specifically, if the browser detects a quick fill of forms or quick scan of a large amount of pages, it
will block further HTTP requests and disable all JavaScript in the static site. Therefore, to pass the
check, I included some random sleep in the script, which potentially lowers the efficiency of the
script but ensures the accuracy of the scraped data.

To speed up the scraping process, two browser options are set in Selenium WebDriver. First, by
default, Selenium WebDriver simulates an actual execution of browsers through which developers
can see a browser initiated and triggered by code. This ”real” execution requires more CPU and
can be turned off, which means no browser will pop up and the execution happens behind the
scene. Second, Selenium can be set to prevent from loading static files such as images, icons, etc,
which also improves the responsive time of the site. Since the scripts run on the smallest EC2
instance, it is too resource-consuming to turn on the first option. Here is a comparison (CPU-wise)
between the performance of one execution of the script with and without the second option being
set up (Figure 16). It is obvious that disabling static files is more efficient.

Page 17 of 18



Figure 16: CPU utilization on EC2: 3 executions: the first and second has the setting ’–blink-
settings=imagesEnabled=false’ and the third execution enables static files in the browser.

9 In the Future

Based on the current functionalities of this automation, further analysis can be done with the
data scraped. For instance, the number of dirty rooms can be calculated and synced to another
base on Airtable for the cleaning department, such that the manager can better assign the ground
crews.

In terms of the robustness and scalability of this application, as the number of properties en-
larges, an instance with better computation power might be needed. On AWS, it is easy to migrate
data through images. Since we have everything related to Airbnb stored on Parameter Store,
whenever Airbnb updates their webpage, the main constants we need to modify is in the param-
eter store. In other words, the code stays the same.

Page 18 of 18


	Motivation
	Short Intro on Platforms
	Airbnb
	AWS
	Airtable

	Design
	Scripts
	Selenium Behind the Scene
	Class Diagram

	Cloud - AWS
	EC2
	S3
	DynamoDB
	Gateway API
	Lambda

	UI - Airtable

	Security
	User Benefits
	Feature Description
	Scripts
	Airtable
	AllPropertiesInfo
	Cleaning and Other Departments


	Descriptions of APIs
	CREATE one record
	GET one record
	UPDATE one record
	DELETE one record

	Performance
	In the Future

